In the last few decades, researchers have worked increasingly on alternative cooling technologies that do not use refrigerants containing fluorocarbons. Technologies such as ferroelastic cooling promise high effectiveness, a more efficient use of resources and reduction of greenhouse gas emissions. This form of cooling uses wires of a pseudoelastic shape memory alloy based on nickel/titanium (NiTi). A mechanical load on the NiTi wires causes large, reversible deformations due to a stress‐induced martensitic transformation. A martensitic structure is created, and thermal energy is given off to the surroundings. With removal of the load, the stress‐induced martensitic structure changes back into the original austenite. Thermal energy from the surroundings must be expended for this.

To achieve the maximum savings potential of ferroelastic cooling, the entire deformation process must be regulated optimally. The researchers want to control parameters independently, such as frequency or phase shift between the mechanical stress and heat transfer. In addition, they want to measure the resulting cooling performance for a specific material and a specific device geometry. To do this, Seelecke and Schmidt have developed an imaging measurement platform.

It works with an ImageIR® 9300. The high‐end thermal imaging camera is equipped with a 1x microscope lens and detects the wire to be measured, whose diameter is only approximately 150 μm. Exact thermographic temperature measurement even on longer wire sections is ensured through the geometric resolution of 15 μm. In this way, the researchers can retrace the ferroelastic cooling effects very precisely. Thanks to the camera's (1,280 x 1,024) IR‐pixel detector, the Saarbrücken‐based scientists can monitor long parts of the tiny wire and record the structural changes. The high temporal resolution of the ImageIR® 9300 of up to 106 Hz in full‐frame format also lets them follow even brief temperature changes.

Infrared camera ImageIR® 9300 Series from InfraTec
Further information about camera series ImageIR® 9300

InfraTec Solution

Saarland University
Zentrum für Mechatronik u. Automatisierungstechnik

Infrared camera: ImageIR® 9300

Nickel‐titanium Wires in Tension Test

Evaluation of the thermograms is just as sophisticated. Reflection effects and emission coefficients that are complicated to determine are among the regular challenges. Seelecke and his team therefore value the integrated correction model of the supplied IRBIS® 3. “With the software we can compensate for astonishingly many effects. That clearly makes our work easier.” The software, together with the large detector format and the high geometric, thermal and temporal resolution, forms a package that makes the ImageIR® 9300 ideally qualified for use in materials research. And by the way, this combination will hopefully do its part to ensure that we all can save more energy and protect the environment in the foreseeable future.

Advantages of this Thermography Solutions in this Application

  • Learn more about the modular concept

    Modular Concept for Your Flexibility

    The camera can be adapted to all requirements of the user due to modular design of the camera series ImageIR®. This means that a customer-specific thermography system is achieved in every direction. But the ImageIR® can also be subsequently retrofitted or upgraded in the event of changing measurement requirements. In this way, maximum investment security is achieved.

  • InfraTec thermography - Geometrical Resolution

    Geometrical Resolution – Efficient Analysis of Complex Assemblies

    InfraTec's infrared cameras with cooled and uncooled detectors have native resolutions up to (1,920 × 1,536) IR pixels. Spatially high-resolution thermograms ensure that components and assemblies are imaged down to the smallest detail and thus defects can be reliably detected and precisely localised.

Relevant Industries & Applications

  • high-speed thermography
    High-Speed Thermography

    High-Speed Thermography

    Get even faster and analyze temperatures at highest process speeds.

  • microthermography


    Micro-thermography allows for the thermal analysis of extremely small structures in the micrometer range, providing a detailed representation of the temperature distribution on complex electronic assemblies and components.